Sierpiński curve Julia sets for quadratic rational maps
نویسندگان
چکیده
We investigate under which dynamical conditions the Julia set of a quadratic rational map is a Sierpiński curve.
منابع مشابه
Sierpinski-curve Julia sets and singular perturbations of complex polynomials
In this paper we consider the family of rational maps of the complex plane given by z2 + λ z2 where λ is a complex parameter. We regard this family as a singular perturbation of the simple function z2. We show that, in any neighborhood of the origin in the parameter plane, there are infinitely many open sets of parameters for which the Julia sets of the correspondingmaps are Sierpinski curves. ...
متن کاملSingular Perturbations of Complex Polynomials
In this paper we describe the dynamics of singularly perturbed complex polynomials. That is, we start with a complex polynomial whose dynamics are well understood. Then we perturb this map by adding a pole, i.e., by adding in a term of the form λ/(z − a)d where the parameter λ is complex. This changes the polynomial into a rational map of higher degree and, as we shall see, the dynamical behavi...
متن کاملSome Rational Maps Whose Julia Sets Are Not Locally Connected
We describe examples of rational maps which are not topologically conjugate to a polynomial and whose Julia sets are connected but not locally connected. Introduction and motivations The dynamics of a rational map f acting on Ĉ is concentrated on its Julia set which is (by definition) the minimal compact set invariant by f and f−1 containing at least three points. The question of local connecti...
متن کاملCheckerboard Julia Sets for Rational Maps
In this paper, we consider the family of rational maps Fλ(z) = z n + λ zd , where n ≥ 2, d ≥ 1, and λ ∈ C. We consider the case where λ lies in the main cardioid of one of the n − 1 principal Mandelbrot sets in these families. We show that the Julia sets of these maps are always homeomorphic. However, two such maps Fλ and Fμ are conjugate on these Julia sets only if the parameters at the center...
متن کاملMating Siegel Quadratic Polynomials
1.1. Mating: Definitions and some history. Mating quadratic polynomials is a topological construction suggested by Douady and Hubbard [Do2] to partially parametrize quadratic rational maps of the Riemann sphere by pairs of quadratic polynomials. Some results on matings of higher degree maps exist, but we will not discuss them in this paper. While there exist several, presumably equivalent, ways...
متن کامل